Mathematics of NRC-Sudoku

Bastian Michel

December 5, 2007

N
e

SN
UK > LR N\ \
e s A W IIN==

. ﬁl[
\ z?ié.;

a7
I %>
l

R

N Wi
"’0 ‘?‘,'/5}‘% , s
IS0\
s TN

= ';‘li‘\s'l‘v /
AR
AU

/‘"‘A“ Kk O
FAR=N OV
Semne Wive S

AN
e R INAT
<= NN 1%
NN 27
\\\\F\ NI
N\

}‘\

<
\\
'$;

DZSAN sl
AR W =N\
— N\

“ —

Abstract

In this article we give an overview of mathematical techniques used to count the number of
validly completed 9 x 9 sudokus and the number of essentially different such, with respect
to some symmetries. We answer the same questions for NRC-sudokus. Our main result is
that there are 68239994 essentially different NRC-sudokus, a result that was unknown up
to this day.

In dit artikel geven we een overzicht van wiskundige technieken om het aantal geldig inge-
vulde 9 x 9 sudokus en het aantal van essentieel verschillende zulke sudokus, onder een klasse
van symmetrieén, te tellen. Wij geven antwoorden voor dezelfde vragen met betrekking tot
NRC-sudoku’s. Ons hoofdresultaat is dat er 68239994 essentieel verschillende NRC-sudoku’s
zijn, een resultaat dat tot op heden onbekend was.

Dit artikel is ontstaan als Kleine Scriptie in het kader van de studie Wiskunde en Statistiek
aan de Universiteit Utrecht. De begeleidende docent was dr. W. van der Kallen.

Contents

1 Introduction
1.1 Mathematics of sudoku Lo
1.2 Aimof thispaper e
1.3 Terminology L e e
1.4 Sudoku as a graph colouring problem oL oL
1.5 Computerised solving by backtracking

2 Ordinary sudoku
2.1 Symmetries
2.2 How many different sudokus are there?
2.3 Ad hoc counting by Felgenhauer and Jarvis
2.4 Counting by band generators L L o
2.5 Essentially different sudokus oo

3 NRC-sudokus
3.1 An initial observation concerning NRC-sudokus
3.2 Valid transformations of NRC-sudokus
3.3 An ad hoc approach to counting NRC-sudokus
3.4 Essentially different NRC-sudokus

Appendices

[B2 BTSN JUR JU

RelNe RN BEN I

1 Introduction

Sudoku, originally invented by Howard Garns in 1979 and published in Dell Magazine as ‘Number
Place’, has been popular in Japan from 1986 on. Only in 2005 it became an international success
under its current name ‘Sudoku’, meaning something like ‘single number’.

Sudoku is a puzzle played on a grid of 9 x 9 cells, divided in nine 3 x 3 boxes. At the initial
state of the puzzle some cells are filled with one of the digits 1,...,9. Its objective is to fill the
remaining cells of the grid with the digits such that the following simple rule, also called ‘the one
rule’; is met: each digit must occur exactly once in each of the rows, columns and boxes. The
solution to a given sudoku puzzle is always required to be unique.

9 7 6191513147218

3 7T11({8]2|6|514|3]9

3142 8 314(12]9|7|8]5|1]6
5 2 513716811942
81914 5 1181914(2(3[6]5]|7

7 3 4121617591381

8) 4 816 [1]5(3|712]9|4
311 9171311 |14|12]8|6]5

2 6 215418961173

The sudokus published by the Dutch newspaper NRC Handelsblad differ from normal sudokus
only in satisfying one more rule: each of the digits 1,...,9 must occur exactly once in each of
the four grey underlaid boxes.

8 211({4]16]|5|918|713

9 5|2 7T18[9]1]4|3]16|5]2
31517 2 6|3|5]7|8|211|4]9
1 316(2]4|1|719|8|5

8195 614 815|71319|614(2]1
1 5 91411825367
312 51932641718

1 8 117(6]|5[3[8]2]|9|4
412 3 4121819 |7|1]15|3]6

For lack of a better name, these special sudoku puzzles are commonly refered to as ‘NRC-
sudokus’.

1.1 Mathematics of sudoku

Currently there is no theory that would enable a concise, profound and complete analysis of the
mathematically interesting structures underlying sudoku, nor is it likely that such a theory could
be developed. However, there are a few theories that relate to sudoku in some way and many
others that provide different useful techniques. Amongst the former, the theory of magic squares,
dating back to the middle ages, and the theory of graph colourings should be mentioned. The
most important of the latter is, without doubt, combinatorics. In fact, sudoku being popular

quite a short period only, the mathematicians interested in sudoku are still assembling different
techniques from various fields for its analysis.

The mathematically interesting challenges of sudoku largely fall apart in two classes: analysing
the properties of completed sudoku grids and analysing the features of initial states of sudoku
puzzles.

e How many different sudokus are there?
e Which transformations of a completed grid preserve its validity?

e How many essentially different sudokus, i.e. not being equivalent through those transfor-
mations, are there?

e How many clues are required in a puzzle to render its solution unique?

e What makes a puzzle harder or easier to solve?

e What is exactly the importance of place and value of the clues in that question?
e Which solving techniques are the best, for man and machine?

e Can our techniques be generalised to arbitrary rectangular grids with arbitrary divisions
in boxes?

1.2 Aim of this paper

In this article we will concentrate on the first three of these questions, dealing with properties of
completed sudoku grids.

Our main aim is to answer these questions for the case of NRC-sudokus. The total number
of NRC-sudokus is known by a result ascribed to Andries E. Brouwer, however there is no
documentation of his approach to be found anywhere. We confirm his result in section 3.3.
The transformations that preserve validity of an NRC-sudoku are fairly easily recognisable and
probably well-know within the community interested in this complex. However, this does by
no means weaken the necessity of a thorough analysis, which we will give in section 3.2. The
number of essentially different NRC-sudokus is, to our best knowledge, unknown up to this day.
We will give it in section 3.4.

A secondary aim of this article is to provide the reader with a range of techniques that are
used to analyse sudoku. To this end, we give an overview of the results for ordinary sudoku
corresponding to our three questions in the second part of the paper. Also, this part serves as
a lead-up to our investigation of the NRC-case. Most techniques for ordinary sudoku cannot be
used for NRC-sudokus and it will be interesting to see why. The only technique, in fact, that
can be used for the NRC-case is the one that Russel and Jarvis apply to ordinary sudokus in
their article [2], in order to find the number of essentially different sudokus. It is thanks to this
technique that we are able to give our main result in 3.4.

1.3 Terminology

To refer to rows and columns we enumerate them top-to-bottom and left-to-right and write rl,
r2, ...and cl, c2, ... We will be careful not to confuse single cells with boxes or ‘blocks’ consisting
of 3 x 3 cells. The boxes will be enumerated as B1, B2, ... top-to-bottom and left-to-right. Rows,
columns, boxes and NRC-boxes are the four sorts of ‘regions’ of a grid. The cells will be referred

to by their block number and, within the block, by enumerating the cells top-to-bottom and left-
to-right, such that, for instance, the cell in the very middle will be called B55. The initial state
of a sudoku, as published in newspapers, is called a puzzle. Often, we will refer to a correctly
completed grid simply by calling it a sudoku.

c4

B61|B62|B63

B64|B65|B66

r6 B67|B68|B69

1.4 Sudoku as a graph colouring problem

For some detail of our analysis graph theory provides useful techniques. The 9 x 9 sudoku grid is
represented as the following graph: two of 81 points, intended to represent the cells, are joined
by an edge whenever the two respective cells occur in the same row, the same column or the
same block (or, in the case of NRC-sudokus, in the same NRC-block), i.e. sharing at least one
region. We discard the possibility of double edges: two points are either linked by one edge
or not linked. Also, we stress that no point is linked to itself. So, e.g. the point representing
cell B61 is linked to the eight points representing the other cells in its row r4, the eight points
representing the other cells in its column ¢7 and the four points representing the remaining four
cells in its block B6. The situation is similar for all other points: each point is joined to exactly
20 others. In fact, all points in the graph are similar: there is none that has any special graph
theoretic property, or, put differently, looking at the graph from one point gives the same view
as looking from any other point. This is not true for the graph representing the NRC-sudoku
grid. We will discuss this later on.

The graph representing the ordinary sudoku grid is shown on the title page.

The problem of solving a sudoku can now be thought of as a colouring problem on the graph:
give each point one out of nine colours in such a way that the following rule, the reflection of the
one rule, is fulfilled: two points that are joined by an edge must never have the same colour.
As said before, this representation of sudoku will provide good grounds for some analysis. It
should, however, be quite clear that for the normal problem of solving a given sudoku puzzle,
this representation would be a very bad choice: no human being could possibly solve a puzzle
on its graph as effectively as it could solve it on its grid.

1.5 Computerised solving by backtracking

Before concentrating on the main questions of this article, we should briefly describe the principle
of a backtracking algorithm that can be used to solve sudokus. This algorithm is incredibly
stupid, but, put in practice, works astonishingly fast. A puzzle should be fed to the program.
The algorithm searches the first free cell and fills it with the least digit that does not immediately
violate the one rule at this place. Then it continues to the next free cell. When at any state it
is impossible to fill in any of the nine digits, i.e. having reached a contradiction, the algorithm

goes back to the cell before and tries a greater digit here. Put abstractly, the algorithm proceeds
to fill in anything as far as possible and, having reached a contradiction, tracks back as little as
possible. A backtracking algorithm that solves NRC-sudokus is given in appendix A.

Solving a sudoku with a computer program based on a backtracking algorithm is a matter of
fractions of a second. Such a program is easily adapted to count completed sudokus rather than
solving puzzles.

2 Ordinary sudoku

2.1 Symmetries

The easiest way to make a new sudoku puzzle is probably to take an old one, which is known
to lead to a unique solution, and change it in some trivial ways. We can, for instance, turn it a
quarter turn clockwise and exchange all 1s with the 2s. There are several of those transformations
that preserve validity of a completed sudoku. We will call them symmetries.

1) All permutations of the nine digits. 9!
2) All permutations of the three bands. 3!
3) All permutations of the three stacks. 3!
4) All permutations of the three rows in one of the three bands. 313
5) All permutations of the three columns in one of the three stacks. 33
6) Transposition 2

Note that some other obvious symmetries are nothing but compositions of symmetries mentioned
here. For instance, reflection in the horizontal axis is the same as permutation of the upper and
lower band followed the row permutations (rl r3)(r4 r6)(r7 r9). The analogous transformation for
stacks and columns coincides with reflection through the vertical axis. Rotation by a quarter turn
clockwise coincides with transposition followed by the permutations that constitute a reflection
in the vertical axis, anticlockwise rotation by a quarter turn is nothing but transposition followed
by the permutations that constitute a reflection in the horizontal axis, a half turn is a vertical
and a horizontal reflection composed.

Note also that we did not include any transformation that would be valid only on some sudokus
and on others not. Consider for instance a sudoku containing the following:

In such a sudoku we could permute the entries 2 and 6 on these places and keep them fixed on
other places. This manipulation, however, is not valid on most sudokus. So, with the purpose
of taking in account only those transformations being valid on all completed sudokus, we claim
to have given them all in our list above.

For the transformations 2) — 6) it is also clear that they are all independent of each other and
therefore, they form a group of order

3! x 3! x 318 x 313 x 2 =318 x 2 = 3359232,

in other words: each sudoku is related to 3359231 other ones through these transformations.
However, including the permutation of digits, 1), in our considerations, changes the situation
dramatically. There are lots of completed sudokus for which a relabelling coincides with a
composition of transformations 2) — 6). Consider, for instance, the following completed sudoku,
provided by Russel and Jarvis [2], for which the permutation of digits (1 39 7)(2 6 8 4) has the
same result as a quarter turn anticlockwise:

11214|5]6[7]8]9]3
317181219 |4|5|1|6
615|918 |3|1|7|4|2
918|711|12|314|6|5
213[1]14]5|619|7|8
5141671891321
816131971211 |5|4
4191516181237
71112]13[4]5]6|8]|9

This non-independentness will become important when we want to count the number of essen-
tially different sudokus.

All but the first symmetry are in fact symmetries of the grid, and will therefore be called ‘grid
symmetries’.

2.2 How many different sudokus are there?

Our mathematical apparatus provides some techniques to give upper bounds to the number of
sudokus. However, the exact answer, until now, is essentially found by computerised brute-force
counting, in which mathematical techniques are only used to achieve a considerable reduction of
the cases to be counted.

By basic combinatorics, there are 9! ways to insert the nine digits into one row, one column or
one box. Therefore there are 91° & 1.0911 x 10°° completed grids that fulfil the one rule only
with respect to one of rows, columns or boxes.

Sudokus that fulfil the one rule with respect to rows and columns, but not necessarily with respect
to boxes, coincide with 9 x 9 magic squares. The theory of magic squares does not provide any
general formula to calculate the number of such squares. The number of 9 x 9 magic squares was
calculated by Bammel and Rothstein in 1973: 5524751496156892842531225600 ~ 5.525 x 1027.
The counting techniques they used are essentially the same as those used for sudokus today.

2.3 Ad hoc counting by Felgenhauer and Jarvis

Apparently, the first to find the number of sudokus were Felgenhauer and Jarvis, see [1]. Their
brute-force counting is implemented as a backtracking algorithm. First, they count the number
of consistent fillings of the first band. Then, using the symmetries, they deduce that these fillings
can be split into just 44 classes such that two members of one class have the same number of

completions. This latter number they count by means of a brute-force algorithm for each of the
44 cases. FEach result has to be multiplied by the respective number of class members. Adding
these products gives the result 6670903752021072936960 ~ 6.671 x 102!,

2.4 Counting by band generators

Even before official publication of Felgenhauer and Jarvis’s approach, a different and more ef-
fective method seems to have appeared on different forums, referred to as ‘the method of band
generators’. The following is largely based on the current content of [5].

The underlying idea of this approach is to initially ignore some of the requirements for a valid
sudoku. We begin by considering one band. For each column in this band, also called a mini-
column, we choose an unordered set of three entries such that the one rule with respect to the
boxes is fulfilled, i.e. we choose A1, Aa, ..., Ag C {1,...,9} with #4; = 3 such that A;UAUA3 =
Ay UA5U Ag = A7 U AgU Ag = {1,...,9}. Such a sequence of sets (Ay, As,..., Ag) we call a
band generator g. Note that there are (g) = 84 choices for A; and another (g) = 20 for Ao,
which together determine Az. So we have 84 x 20 = 1640 choices for Ay, A5, A3. The situation
for the other A; is alike, giving us 1640% = 4741632000 band generators.

We say that a band generator g = (Ay, ..., Ag) generates a band if each entry of the ith mini-
column of the band is an element of A;, i.e. a band is obtained from a band generator by fixing
places in a minicolumn for all elements of the respective set A;. We stress that any band generated
by a band generator fulfils the one rule with respect to boxes, also each of them weakly fulfils
the one rule with respect to the columns, i.e. mini-columns contain no repeated value, as those
all appear in the same box. But only quite few respect the row rule. Let B(g) be the number of
valid sudoku bands that g generates, i.e. bands that also fulfil the one rule with respect to rows.
Typically B has values around 200.

To fill all three bands of a grid and take into account the one rule with respect to columns,
we introduce a ternary relation on band generators: we call three band generators g1, gs, g3
compatible if, when placed in a grid, each column contains each digit exactly once, and we will
write C'(g1, g2, 93). More formally: C((A41,...,Ag),(B1,...,By),(C1,...,Cy)) holds if A;UB;U
C; ={1,...,9} for each i € {1,...,9}. It is this very notion that is essential to our approach:
compatibility can be defined, as we did, on band generators, as the position of a digit in one
mini-column does not matter for the column rule to hold or not. And, tragically, it is this
very point in the approach that does not work out for NRC sudokus: we cannot define such a
compatibility notion in order to force the one rule to hold with respect to the grey NRC-boxes
while keeping that notion on the level of generators.

Now, the number of valid sudokus is

Z B(g1) x Z B(g2) x B(gs)

91 (92,93) | C(g1,92,93)

This neat formula would be quite useless for an efficient computation if we really had to loop over
all 4741632000 band generators. But fortunately, we can use symmetries to reduce the number
of band generators g; has to loop over. We take into account the following symmetries:

e relabelling the nine digits,
e permuting the three boxes,

e permuting the three mini-columns within one of the three boxes.

It turns out that under these symmetries the 4741632000 band generators are partitioned into
just 44 classes. Let K(g) = 1,...,44 be the number of the class ¢ falls in, under some fixed
enumeration of the classes. As we used validity preserving symmetries only, we know that two
generators of the same class generate the same number of valid bands, i.e. B is constant on each
class and can therefore be lifted, to be understood as a function on the class numbers {1, ...,44}
from now on. Let #(i) be the number of class members of the ith class and G(i) any of its
representatives. Then the number of valid sudokus is

44
> | #30) x B(i) x > B(K(g2)) x B(K(g3))
i=1 (92,93) | C(G(i),92,93)
One can now leave the calculation to a computer program. The program, for each i = 1,...,44,

will have to find all go, g3 that are compatible, i.e. fulfilling C(G(7), g2, ¢g3). The computation of
the two times 44 values of # and B will be easy. The computation of G and K should be made
efficient by choosing neat representatives for each class and a neat enumeration of the classes.
Efficient implementations are reported to compute the result within fractions of a second. The
number of valid sudokus calculated by Felgenhauer and Jarvis has been confirmed by this ap-
proach several times.

2.5 [Essentially different sudokus

In their article [2] Russel and Jarvis provide an approach to calculate the number of essentially
different sudokus that we will later use for NRC-sudokus. It is based on using Burnside’s lemma,
stating that

If G is a group acting on a finite set A then the number of orbits #A/G is equal to
the average number of fixed points of A under the elements g € G, i.e.

1
#4/G = o5 x > #AY,

geG
where for each g € G, A9 denotes the fixed points of A under g.

The number of orbits calculated thus, will be the number of essentially different sudokus. They
take the 3!8 x 2-elements group of grid symmetries as G. In order to take into account the 9!
relabellings, they define an equivalence relation on all sudokus, two of them being equivalent if
they are equal through some relabelling. So A is the set of equivalence classes of this relation.
Now, for each g € G, they must count sudokus fixed under g up to relabelling, i.e. equivalence
classes fixed under g. They denote the symmetries g € G as permutations of the 81 cells, although
they could have denoted them as permutations of the 18 rows and columns, as we will do later.
Now they point out that it is not necessary to count the number of fixed classes for each of the
318 x 2 = 3359232 elements of G. Each two members of a conjugacy class of G will give the
same number: suppose ¢,¢g' € G and g = h=1g'h for some h € G and suppose g fixes exactly n
sudokus X1,...,X, up to relabelling, i.e. X; = p;gX; for all 1 < i < n, where the p; € Sy are
relabellings. Then X; = p;h~'¢'hX;, hence hp; X; = ¢’hX;, and as all relabellings commute with
all grid symmetries, we have p;hX; = ¢’hX;, which means that ¢’ fixes hX; up to relabelling.
As all those hX; are distinct, we know that there are at least n sudokus, namely hXy,..., hX,,
that are fixed by ¢’ up to relabelling, which means that #A49 < # A9 By symmetry also
HAY < H#HAI. g0 #A9 = #A9 whenever g and ¢’ are conjugate, as we wanted to prove.

So, instead of counting the number # A9 of sudokus fixed by a symmetry g up to relabelling
for each symmetry g € G, they count #AY just for one representative per conjugacy class and
multiply by the size of the respective class. Let C be the set of conjugacy classes and k some
fixed function C — G that chooses a representative from each class. Then the formula above
simplifies to .

X Z #AFC) w0,

ceC

Most symmetries, however, do not fix any sudoku up to relabelling, so the factor A*(©) will be
zero in most cases. The non-zero factors are calculated by a computer program. Russel and
Jarvis have documented the respective results on their website. The final result is that there are

5472730538

or

five billion four hundred seventy-two million seven hundred thirty thousand five hun-
dred thirty-eight

essentially different sudokus.
We will use the same techniques to calculate the number of essentially different NRC-sudokus.

3 NRC-sudokus

3.1 An initial observation concerning NRC-sudokus

As remarked in many forums on NRC-sudokus, the four new boxes induce five more boxes to
which the rule applies. As those are disconnected sets of cells, they might not be immediately
seen. But consider the rows r2, r3, r4. In this scope each digit occurs exactly three times, two
times of which are consumed by the two upper grey boxes. This leaves exactly one occurrence
of each digit for the other nine cells, highlighted blue in the picture below.

Obviously, the same reasoning also applies to the rows r6, r7, r8 and to the columns c2, c3, c4
and c6, c7, c8, leading to three more disconnected boxes:

10

Now this picture suggests our final observation: in the entire sudoku each digit occurs exactly
nine times, eight times of which are consumed by the four grey and four coloured boxes. This
leaves exactly one occurrence of each digit for the other nine cells, the ones that are not yet
highlighted. Therefore, we will consider these cells to form a new box too.

Having revealed these hidden structures induced by the four grey boxes, we end up with a fourth
complete covering of our sudoku grid: not only the rows, the columns and the boxes form an
exact cover of the grid, also the four grey plus five new boxes do. We will call them NRC-boxes.

3.2 Valid transformations of NRC-sudokus

A brief check on our list of symmetries of ordinary sudokus shows that most of them do not
preserve the validity with respect to the NRC-boxes and are therefore not symmetries of NRC-
sudokus. The remaining ones are:

1) All permutations of the nine digits. 9!
2) The row permutations (r2r3) and (r7r8). 2x2=4
3) The column permutations (c2c3) and (c7c8). 2x2=4

4) Reflections in the horizontal and vertical axes, transposition and rotation. 2x2x2 =8
Now, the role of transposition can be a hint to discovering another symmetry. Transposition
of a sudoku grid exchanges the rows and columns and leaves the boxes as such. Exchanging
rows and boxes while leaving the columns as such is impossible, as is exchanging columns and
boxes while leaving the rows as such. But now we have a fourth complete covering of the grid,
and in fact it turns out that it is possible to exchange boxes and NRC-boxes while leaving the
rows and columns as what they are. From this feature it is obvious that this transformation will
preserve validity of the sudoku. The transformation is a composition of permutations that taken
separately would not preserve validity: permute (r1r4)(r6r9)(clc4)(c6c9) as in the picture below:

11

Observe that not only do the NRC-boxes shift in the place of the normal boxes, also do the
normal boxes shift in the place of the NRC ones. For lack of better, we will call this composition
of permutations

5) The NRC-transformation. 2
In fact, we can assure ourselves that there are no more grid symmetries than the above mentioned.
We employ the following definition: a permutation of the 81 cells of the NRC-sudoku grid is called
a symmetry if it sends regions to regions. As under such a symmetry the structure of the grid
is unchanged, the uncoloured graph is preserved and any correctly completed grid will remain
such. In particular, all true statements about the uncoloured graph will remain so. Now, this
intensionally broad concept will in extension narrow to just the symmetries mentioned above.
A symmetry preserves incidence of two regions: let S be any symmetry and Ry, Ry two regions.
If some cell a is a member of the overlap R; N Ry, then its image S(a) will be member of the
overlap of regions S[Ry N Rg] = S[R;] N S[R2]. On the other hand, for any member b of the
overlap S[R1] N S[Rz], we know that S~1(b) is a member of R; N Ry. So

Ri1iN Ry 75@ < S[Rl] ﬂS[RQ] 7é 0.

Moreover, as a symmetry is a bijection on the cells and regions are entirely determined by the
cells they contain, a symmetry is also a bijection of regions. Therefore, if a region R is disjoint
from n other regions Ry, ..., R,, then and only then its image S[R] under a symmetry S will be
disjoint from exactly the n regions S[R1],...,S[Ry].

We observe that

e A row is disjoint from

— 8 rows

— 0 columns

6 blocks

6 NRC-blocks

in total 20 regions.
e Similarly, a column is disjoint from 20 regions.
e A block is disjoint from

— 6 rows

— 6 columns

8 blocks

— 0, 3 or 5 NRC-blocks

a total of 20, 23 or 25 regions.
e Similarly, an NRC-block is disjoint from 20, 23 or 25 regions.

From this it can be seen how few symmetries there are. Suppose that a symmetry .S would map
a row r to a block. Then this can only be a block that is also disjoint from 20 regions, the only
such being the middle block B5. This also means that from now on no other row can possible
be mapped to any other block. But what happens to the other 8 rows, 8 regions that are not
only disjoint from our row r but also mutually disjoint. We have to find regions for them with
this same property. As B5 is not disjoint from any of the NRC-blocks, those cannot be used.

12

We cannot use a row and a column at the same time, as those are never mutually disjoint. As
we can use at most 6 rows (or 6 columns) disjoint from B5, at least two rows (or two columns)
would have to be mapped to blocks, which is impossible. So a row can never be mapped to a
block under any symmetry.

Similarly we can prove that no row can be mapped to any NRC-block: the white NRC-block
is the only that is disjoint from 20 regions, but it intersects with all blocks, so at least two of
the other eight rows must be mapped to an NRC-block, which is impossible. The reasoning for
columns is the same. Therefore we know the following:

No symmetry maps any row or column to any block or NRC-block.

Suppose any row r were mapped to a column. Then any of the other 8 rows, being disjoint from
r, must be mapped to a region disjoint from the column S[r]. According to the above mentioned
result, it can only be mapped to a column. So we see that:

Under a symmetry either all rows remain rows and all columns remain columns, or
rows and columns are completely interchanged to columns and rows.

Now, this result has a beautiful consequence. Let us consider any cell a. We can identify a with
the pair (rz,cy) of its row and column. Now for any symmetry S, one of S[rz] and S[cy] will be
a row and the other a column. As S(a) will be member of both of them, it must be their only
common cell. This shows that if we know the action of a symmetry S on the rows and columns,
that we know its action on each of the cells. Therefore, a symmetry is entirely determined by its
action on the rows and columns.

This means that in order to find all symmetries, we only have to look for valid permutations of
the rows and columns. Let us collect some more facts about our grid.

We noticed in our arguments that the middle block B5 and the white NRC-block have a unique
property. Their only common cell is the middle-most, which is uniquely determined by the
following property: all four regions in which it falls are disjoint from 20 other regions. As this is
an uncoloured-graph-theoretic property, it must be preserved by any symmetry. As it is unique,
the middle-most cell must be a fixed point of any symmetry. In particular, r5 and c5 can only
be fixed or interchanged.

Also, the sixteen grey cells in the corner blocks have a property distinguishing them from all the
others: in the graph of the NRC-sudoku grid each of them is connected to just 23 other cells, as
opposed to the 24 cells all others are connected to: 8 through its row, 8 through its column, 8
trough its block of which 4 are already counted, and 8 through its NRC block of which not only
4 (like in the case of all other cells) are already counted but 5. Therefore, rows and columns 2,
3, 7 and 8 can only be permuted with each other and not with the other rows and columns.

It is now easy to check that the only valid permutations of rows and columns that respect all
these properties are the ones we found before.

3.3 An ad hoc approach to counting NRC-sudokus

We want to count all possible NRC-sudokus, using as many symmetries as possible to reduce the
computation time to an acceptable amount.

Our first step is to just count one of the 9! NRC-sudokus that are equivalent up to relabelling
the entries, i.e. up to permutation of the digits. Let Sg be the set of all these permutations. Let
X be the set of all valid NRC-sudokus. We define an equivalence relation ~ on X by

X~Y <= X =p) for somep € Sy

13

Let X be the set of all equivalence classes. Then #X = 9! x #X. Our preferred representative
of each class will be the sudoku whose first row is in standard form. It is this representative that
will actually be counted by our brute-force algorithm.

11213[14]5[6]7(8]9

Next, it is sufficient to count only one of each two NRC-sudokus that are equal up to reflection
in the vertical axis (r). First, note that the reflection r is none of the relabellings: r keeps
all entries in the middle column ¢5 unchanged, and those are exactly the nine different digits.
On the other hand, all entries outside cb are changed. So two sudokus being equal up to the
reflection r can never fall into the same ~-equivalence class. Moreover, it is clear that the
reflection r and any permutation p € S commute. Therefore r lifts from X to X in a natural
way: suppose X1 = r(Xs), Y1 = r(Y3) and X; ~ Y7, say X; = p(Y1); then Xy = r(Xy) =
r(p(Y1)) = r(p(r(Y2))) = r(r(p(Yz2))) = p(Y2), so X3 ~ Y. In other words: each ~-equivalence
class is linked through r to some other such class and we will need to count only one of those
two. Formally, we update our equivalence relation ~ to the following:

X ~Y <= X =pY)) for some p € Sy and some £ € {id, r}.

For the updated set of equivalence classes X we have #X = 9! x 2 x #X. The choice of
a preferred representative to be counted becomes a little more subtle here. Still, we want to
count a representative whose first row rl is in standard form. But now there are two of those
in each ~-equivalence class, say X7, X3, related to each other through the reflection r and the
necessary relabelling: X7 = (19)(28)(37)(46)(r(X2)). We can profit from the fact that the 5s are
not relabelled. Consider our blue NRC-block. Here, in any valid NRC-sudoku whose first row
is in standard form, the 5 occurs outside the middle column c5. In one of X, X5 it occurs left
from the middle, in the other right from the middle. We decide to count the one where it occurs
left from the middle. So our preferred representative to be counted will be in the following form:

11213[4(5[6]7(8]9

5

5

14

We will achieve the next reduction with a factor 2 by considering the valid transformation (r2 r3),
i.e. permuting the second and third row. Similar arguments as above apply and we update our
equivalence relation accordingly. Now we do the same for the column permutation (c2 c3), again
giving us a factor 2. Our updated equivalence relation now will be

X~Y = X =p()) for some p € Sy and some ¢ € (r, (r2 r3), (c2 c3)),

where (r, (r2 r3), (c2 ¢3)) is the 23-elements group generated by these symmetries.

For the updated set of equivalence classes X we have #X = 9! x 8 x #X.

Again, we have to be careful choosing our preferred representative to be counted. Now, each
equivalence class contains four different sudokus in the form we preferred until now: say X7, Xo,
X5 and X with X7 = (r2 r3) X2 = (23)(c2 c3) X35 = (23)(c2 c3)(r2 r3) X, We will take the one
for which the entry in B15 is less then the entries in B16, B18 and B19. Note that this criterion
does not collide with the relabelling (23), as 2 and 3 do not occur a second time in the first block
B1.

Now we will use the permutations (c7 ¢8) and (r7 r8) in a similar way, updating

X~Y &= X =p((Y)) for some p € Sy and some ¢ € (r, (r2 r3), (c2 c3), (c7 c8),(r7 13)).

For the updated set of equivalence classes X we have #X = 9! x 32 x #X.

First, concentrating on (c7 c8), we have two candidates X; and X, with X; = (78)(c7 c8)X5.
We will count the one for which B34 is greater than B35, stressing that the relabelling (78) does
not interfere with our previous choices. In particular, B15 being less than three other entries of
B1, it can neither be 7 nor 8.

Finally, the choice whether to count a sudoku X in this form, or Xy = (r7 r8)X;, which is also
in this form, can be decided again by taking the one in which B62 is less than B65.

So, summarising, we will count only the sudokus of the form

11213[4]5[6]7(8]9

5

~

5

A backtracking program performing this counting is given in appendix B. On a modern machine
it takes approximately thirteen hours of running time. The result of this counting is #X =
545736055. Consequently, there are #X = 9! x 32 x 545736055 =

6337174388428 800
different NRC-sudokus, in words

six quadrillion three hundred thirty-seven trillion one hundred seventy-four billion
three hundred eighty-eight million four hundred twenty-eight thousand eight hundred.

This confirms the result published on [4] and ascribed to Andries E. Brouwer of the TU Eind-
hoven.

15

3.4 Essentially different NRC-sudokus

We will find the number of essentially different sudokus by using the techniques that Russel and
Jarvis have used for ordinary sudokus as described in 2.5. We will also follow their approach in
using GAP, see [6], for some of the more tedious algebraic work.

Let G be the group of grid symmetries as described above. We will denote the symmetries
as permutations of the rows and columns, denoting the rows as 1,...,9 and the columns as
11,...,109.

The group G is generated by

- reflection in the vertical axis (11, 19)(12,18)(13,17)(14, 16)

- transposition (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9, 19)
- (r2r3) (2,3)

- the NRC-transformation (1,4)(6,9)(11,14)(16,19).

It has 256 elements that are split into 40 conjugacy classes.
Let A be the set of all NRC-sudokus, and A9 the set of all NRC-sudokus fixed by g € G up to
relabelling. We will use the formula of Burnside’s lemma:

1

#A4/G = 7

x Y #AMO) x #C,

ceC

where we will leave the choice of k, i.e. the choice of representatives of each conjugacy class, to
GAP. The so chosen representatives can be found in the table below.

Like Russel and Jarvis pointed out, most symmetries ¢ € G do not fix any sudoku up to re-
labelling. The same holds in our case of NRC-sudokus. So let us first state some criteria for
symmetries that rule out the possibility of fixing any sudoku up to enumeration.

Rather than looking for symmetries g € G for which there is some relabelling p € Sg such that
there are NRC-sudokus X with pgX = X, and therefore ¢X = p~1X, we will directly look for g
for which such p~! exists, i.e.: given a symmetry g we will look for relabellings p that coincide
with ¢ on some sudokus X, so p for which there are X with ¢X = pX. For each such symmetry
g we will have to count how many such NRC-sudokus X there are.

Note that any relabelling p is entirely determined by its actions on the nine digits. Assume we
have a symmetry g and an NRC-sudoku X. As in each region of X all nine digits occur, the
effect of g on just one region entirely determines what p must be in order to have the desired
equality gX = pX. We can therefore conclude:

A symmetry g € G that fixes some NRC-sudoku X up to relabelling, must behave
similarly on each of the regions, more concretely: let Ry,..., R3s be the regions of
the NRC-grid and for each of them let g|g, be the permutation of cells of R; that g
induces together with X; then g|g,, ..., g|r, all must have the same cycle structure
— the one that the corresponding p has too.

Also, without looking at the entries of X, which we will not know a priori, we can use the
following fact:

For any such symmetry g that maps a region R to itself, we know that the permutation
of digits p it induces through that region is similar to the permutation of cells of R
that g induces. So on any couple of regions R;, R, mapped to themselves under g
we know that the cell permutations within them must be of equal cycle structure.

Whenever transposition is not involved, we know that in order to induce permutations of the
same cycle structure on r5 and c5 the symmetry’s cycles on rows and the ones on columns must

16

have the same form. We will call this criterion ‘Razor 1’ and we will cut away quite a lot of cases
already.
Also we know that:

A g as desired must change the same number of entries in each region — the one that
the corresponding p changes.

Furthermore, note that gX = pX implies that ¢g?X = p?X, simply because the relabelling p
commutes with the symmetry g and everything is associative, therefore ¢?X = ggX = gpX =
pgX = ppX = p?>X. The contraposition of this implication gives us ‘Razor 2": if g is already
cut out, then consequently g can be cut too. Here we use that for any relabelling p, p? is a
relabelling too.

In the table beneath we give all data required for the calculation. The representatives are shown
in the third column as ordered by GAP. The forth column shows a reason to know that there
are no NRC-sudokus that are equal to themselves up to relabelling under the corresponding
representative. If we do not have such a reason we indicate that the case has been counted
by one of our brute-force algorithms. The last column shows the number of equivalence classes
(through relabelling) that are fixed by the corresponding symmetry. If it is non-zero, we also
need the size of the respective conjugacy class, which in this case is put in column 2.

17

1.]1]id 17463553760
2. (17,18) id on c5 0
3. (12,13)(17, 18) id on c5 0
4. (11,19)(12, 17)(13, 18)(14, 16) id on c5 0
5. (11,19)(12, 17,13, 18)(14, 16) id on c5 0
6. (7,8)(17, 18) id on Bl 0
7. (7,8)(12,13)(17, 18) id on B2 0
8. (7,8)(11,19)(12,17)(13,18)(14, 16) Razor 1 0
9. (7,8)(11,19)(12, 17,13, 18)(14, 16) Razor 1 0
10. (2,3)(7,8)(12,13)(17, 18) id on B5 0
11. (2,3)(7,8)(11,19)(12,17)(13, 18)(14, 16) Razor 1 0
12. (2,3)(7,8)(11,19)(12, 17, 13, 18)(14, 16) Razor 1 0
13. (1,4)(6,9)(11,14)(16, 19) 1) 0
14. (1,4)(6,9)(11,14)(16,19)(17, 18) Razor 1 0
15. (1,4)(6,9)(11, 14)(12,13)(16, 19)(17, 18) Razor 1 0
16. (1,4)(6,9)(11, 16)(12, 17)(13, 18)(14, 19) Razor 1 0
17. (1,4)(6,9)(11,16)(12, 17, 13, 18)(14, 19) Razor 1 0
18. (1,4)(6,9)(7,8)(11, 14)(16, 19)(17, 18) 2) 0
19. (1,4)(6,9)(7,8)(11,14)(12,13)(16, 19)(17, 18) Razor 1 0
20. (1,4)(6,9)(7,8)(11, 16)(12, 17)(13, 18)(14, 19) Razor 1 0
21. (1,4)(6,9)(7,8)(11,16)(12, 17, 13, 18)(14, 19) Razor 1 0
22. | 1| (1,4)(2,3)(6,9)(7,8)(11, 14)(12,13)(16, 19)(17,18) | counted 16384
23. | 4 | (1,4)(2,3)(6,9)(7,8)(11,16)(12,17)(13,18)(14,19) | counted 116336
2. (1,4)(2,3)(6,9)(7,8)(11,16)(12, 17, 13,18)(14,19) | Razor 1 0
95. | 4| (1,6)(2,7)(3,8)(4,9)(11,16)(12,17)(13,18)(14,19) | counted 135568

26. (1,6)(2,7)(3,8)(4,9)(11, 16)(12,17, 13, 18)(14, 19) Razor 1
27. (1,6)(2,7,3,8)(4,9)(11,16)(12,17,13,18)(14, 19) Razor 2 with 10.
28. | 4| (1,9)(2,7)(3,8)(4,6)(11,19)(12, 17)(13,18)(14, 16) counted
29. (1,9)(2,7)(3,8)(4,6)(11,19)(12,17, 13, 18)(14, 16) Razor 1
30. (1,9)(2,7,3,8)(4,6)(11,19)(12,17,13,18)(14, 16) Razor 2 with 10.
31| 8| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19) | counted
32. (1,11)(2,12)(3,13)(4, 14)(5,15)(6,16)(7, 17,8,18)(9,19) | Razor 2 with 6.
33. (1,11)(2,12,3,13)(4, 14)(5,15)(6,16)(7,17,8,18)(9,19) | Razor 2 with 10.
34. | 16 | (1,11,9,19)(2,12,7, 17)(3,13, 8, 18)(4, 14, 6, 16)(5, 15) counted
35. (111,9,19)(2,12, 7, 17,3, 13,8, 18)(4, 14, 6, 16) (5, 15) Razor 2 with 30.
36. | 8| (1,14)(2,12)(3,13)(4,11)(5,15)(6,19)(7,17)(8,18)(9, 16) | counted
37. (1,14)(2,12)(3,13)(4, 11)(5,15)(6,19)(7,17,8,18)(9,16) | Razor 2 with 6.
38. (1,14)(2,12,3,13)(4,11)(5,15)(6,19)(7,17,8,18)(9,16) | Razor 2 with 10.
39. | 16 | (1,14,9,16)(2,12,7,17)(3,13,8,18)(4, 11,6, 19)(5, 15) counted
40. (1,14,9.16)(2,12, 7, 17,3, 13,8, 18)(4, 11, 6, 19) (5, 15) Razor 2 with 30.

0
0
155816

520624
0

0

264

0

1) This symmetry keeps five entries of c5 fixed but changes five entries in B2.

2) This symmetry has only three fixed points in ¢5 but at least four in B1.

The programs used to count the non-zero cases can be found in Appendix C.
The result of our calculation is that there are

68239994
or

sixty-eight million two hundred thirty-nine thousand nine hundred ninety-four

essentially different NRC-sudokus.

It may also be interesting to consider less symmetries, as in fact Russel and Jarvis have done
too. The NRC-transformation is surely the most ingenious and unnatural symmetry we have

considered until now, so let us drop this one first.
Our group G will now be generated by

- reflection in the vertical axis (11,19)(12,18)(13,17)(14, 16)
. transposition (1,11)(2,12)(3,13)(4, 14)(5, 15)(6, 16)(7, 17)(8, 18)(9, 19)
- (r2r3) (2,3)

It has 128 elements that are split into 20 conjugacy classes.

The corresponding table of results consists of rows 1. to 12. and 28. to 35. of our former table.
The number of essentially different NRC-sudokus not considering the NRC-transformation is

136439416

or

one hundred thirty-six million four hundred thirty-nine thousand four hundred six-

teen.

Also excluding transposition, G can be generated by
- reflection in the vertical axis (11,19)(12,18)(13,17)(14, 16)

- reflection in the horizontal axis (1,9)(2,8)(3,7)(4,6)
- (r2 r3) (2,3)
- (c2 ¢3) (12,13)

18

Then G has 64 elements split into 25 conjugacy classes.

In the corresponding table, only the identity symmetry and 28. in our first table contribute.
The number of essentially different NRC-sudokus, considering neither the NRC-transformation
nor transposition, is

272877766
or
two hundred seventy-two million eight hundred seventy-seven thousand seven hundred
sixty-six.
Bibliography

[1] B. Felgenhauer and A. F. Jarvis, Mathematics of Sudoku I, Mathematical Spectrum 39 (2006),
15-22; consulted on www.af jarvis.staff.shef.ac.uk/sudoku/felgenhauer_jarvis_specl.pdf

[2] E. Russel and A. F. Jarvis, Mathematics of Sudoku II, Mathematical Spectrum 39, 54-58;
consulted on www.afjarvis.staff.shef.ac.uk/sudoku/russell_jarvis_spec2.pdf

[3] “Sudoku”, Wikipedia, as of November 5th, 2007; permanent URL:
http://en.wikipedia.org/w/index.php?title=Sudoku&oldid=169295558

[4] “Mathematics of Sudoku”, Wikipedia, as of November 5th, 2007; permanent URL:
http://en.wikipedia.org/w/index.php?title=Mathematics_of_Sudoku&oldid=168941284

[5] Discussion page on“Mathematics of Sudoku”, Wikipedia, as of November 5th, 2007; perma-
nent URL:
http://en.wikipedia.org/w/index.php?title=Talk:Mathematics_of_Sudoku&oldid=137768055

[6] The GAP Group, GAP, version 4.4.10, URL: http://www.gap-system.org

19

Appendix A

The following program solves NRC-sudokus by backtracking. The NRC-specific commands are
easily recognisable. Erasing them gives a solving program for ordinary sudokus. This program
is based on a version proposed by Ulf Rehmann.

/* NRG-sudokusolver.c */

#include <stdio.h>

/*

002006090
100009705
000030000
037000050
800000000
000067008
080005000
015400600
000090004

*/

char z,r;

char matrix [9][9];

char* pnrcmatrix [9][9];

char nrcenr[9] = {3,1,2,0,4,8,6,7,5};

void getmatrix () {
char i,j,c;
printf(” Insert.9._sudoku.rows_top—to—bottom\n_taking.0_for_blanks:_.\n");
for (i = 0; i < 9; i++) {
for (j = 0; j < 95 j++) {
while ((¢ = getchar()) != EOF) {
if (!isdigit(c)) continue;

else {
matrix [1][j] = ¢ — ’07;
break;
}
}
}
}
return;
}
void output () {
int i,j;
for (i =10; i<=38; i++) {
for (j =0; j<=8; j++) {
printf ("%d.” ,matrix[i][]j]);
if (j%3 2) printf(7.7);
}

20

printf(”\n”);
if (i%3 = 2) printf(”\n”);

char check(char a, char b, char u) {

int i,j;
for (i =0; i < 9; i++) {
if (u = matrix[a][i]) return 1;
}
for (i = 0; i < 9; i++) {
if (u = matrix[i][b]) return 2;

}

for (i =a— a%3 ; i <a— a%3 + 3; i++) {
for (j =b — b%3 ; j < b — b%3 + 3; j+b)
if (u = matrix[i][j]) return 3;
}
for (i = nrenrfa] — nrenrf[a]%3 ; i < nrenr[a] — nrenr[a]%3 43 ; i++) {
for (j = nrenr[b] — nrenr [b]%3 ; j < nrenr[b] — nrenr [b]%3 43 ; j++) {
if (u = spnrcmatrix[i][]j]) return 4;

}
}

return 0;

}

char initcheck (char k) {

char u;

while (matrix[k/9][k%9] = 0 && k <= 80) k++;

if (k = 81) return r;

u = matrix[k/9][k%9];

matrix [k /9][k%9] = 0;

if (check(k/9,k%9u) =1) {
printf(”Your.puzzle_contains._a_.contradiction_in.row.%d.\n”, k/9+1);
r = 1;

}

if (check(k/9,k%9,u) = 2) {
printf(”Your_.puzzle_contains_a_contradiction.in.column %d.\n”, k%9+1);
r = 2;

}

if (check(k/9,k%9,u) = 3) {
printf(”Your_.puzzle._.contains._.a_contradiction.in.block %d.\n”,
k/9—k/9%3+(k%9—k %9)%3/3+1);
r = 3;

}
if (check(k/9,k%9,u) = 4) {
printf(”Your_puzzle_contains_a_contradiction_in_one_of_the NRG-blocks\n”);

r = 4;

matrix [k /9][k%9] = u;
initcheck (k+1);

21

void search (char k) {
char i;
while (k <= 80 && matrix [k /9][k%9]) k++;
if (k=281) {
zZ++;
if (z =1) {
printf(” First_solution.found:\n”);
output ();
}
}
for (1 =1; i <=9&& z <= 1; i++) {
if (check(k/9, k%9, i) = 0) {
matrix [k /9][k%9] = i;
if (k = 80) {
z++;
if (z=1) {
printf(” First._.solution_found:\n”);
output ();

matrix [8][8] = 0;
break;

else {
search (k+1);
matrix [k /9][k%9] = 0;
}
}
}
}

int main() {
char i, j;

for (i 0; i <= 8; i+) {
for ((j =0; j<=8; j++) {
purcmatrix[i][j] = &matrix [nrenr[i]][nrenr[j]];
}
}
getmatrix ();
output ();
if (initcheck (0) = 0) {
search (0);
if (z = 0) printf(”There_is.no.solution._to_your.puzzle.\n”);
if (z = 1) printf(”This_.solution_is_unique!\n”);

if (z > 1) printf(” This.solution._is_not_unique!\n”);

22

Appendix B

/* NRCcount.c */

#include <stdio.h>

int Z

char matrix [9][9] = {
{1,2,3,4,5,6,7,8,9},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0},

%
char+* pnrcmatrix [9][9];
char nrcenr[9] = {3,1,2,0,4,8,6,7,5};

char check(char a, char b, char u) {

int 1,j;
for (i = 0; i < b; i++4) {
if (u = matrix[a][i]) return 1;
}
for (1 =0; i <a; it++) {
f (u = matrix[i][b]) return 2;
}

for (i =a— a%3 ; i <a— a%3 + 3; i++) {
for (j =b—Db%3 ; j <b - b%3 + 3; j++)

if (u = matrix[i][j]) return 3;
}
for (i = nrenrf[a] — nrenr[a]%3 ; i < nrenr[a] — nrenr[a]%3 +3 5 i++) {
for (j = nrenr[b] — nrenr[b]%3 ; j < nrcnr[b] — nrcnr [b]%3 +3 ; j++)
if (u = spnrcmatrix[i][]j]) return 4;
}
return 0;
}
void search (char k) {
char i;
for (1 =1; 1i<=9; i++) {
if (k=10 &% i >= 7) break;
if (k=11 && i <= matrix[1][1]) i = matrix[1][1]+1;
if (k=15 && i = 9) break;
if (k = 16 && i <= matrix[1][6]) i = matrix[1][6]+
if ((k=19 && i <= matrix[1][1]) i = matrix[1][1]+
if (k = 20 && i <= matrix[1][1]) i = matrix[1][1]+
if (k = 28 && matrix [1][0] != 5 && matrix [2][0] != 5 && matrix [3][0] != 5) break;

23

if (k=55&& i =9) break;
if (k=64 & i <= matrix[6][1]) i = matrix[6][1]+1;
if (check(k/9, k%9, i) = 0) {
matrix [k /9][k%9] = i;
if (k= 80) {
z++;
if (2%10000 = 0) {
printf ("%d\n”, z);
}
matrix [8][8] = 0;
break;
}
else {
search (k+1);
matrix [k /9][k%9] = 0;
}
}

if (k=9) printf(”Calculation_terminated: _%d\n”

}

N
~—

void main() {
char i, j;
for (i =0; i <= 8; i++) {
for ((j =0; j<=8; j++) {
purcmatrix[i][j] = &matrix [nrenr[i]][nrenr[]]];
}
}
search (9);

}

24

Appendix C

With this program, contributed by W. van der Kallen, we counted the non-zero terms of the
Burnside formula.

/* burnsidecount.c */
#include <stdio.h>

/% g is the symmetry (a,b) |——> (transrow(a,b), transcol(a,b)) */
/% We will count the number of sudokus X for which there is a x/

/* relabelling pi with ¢ X = pi X x/
/% This version works for g of order 2 and also for g of */
/* order 4 whose square fizes only one cell. %/

/* example: to input case nr. 23 type
444444444 3383333333 222222222 111111111 555555555 999999999
888888888 TTTTTTTTT 666666666
678951234 678951234 678951234 678951234 678951234 67895123/
678951234 678951234 678951234 */

int z;

char nrenr([9]= {3,1,2,0,4,8,6,7,5};

char pi[10];

char piinv [10];

char matrix [9][9];

char transrow [9][9];

char transcol [9][9];

charx pnrcmatrix [9][9];

charx ptrans[9][9];

charx ptransinv [9][9];

char check(char a, char b, char u) {

int i,j,k,1;
for (i = 0; i < 9; i++)

if (u = matrix[a][i]) return 1;
for (i = 0; 1 < 9; i++)

if (u = matrix[i][b]) return 2;

for (i =a— a%3 ; i < a — a%3 + 3; i++)
for (j =b —b%3 ; j <b—Db%3+ 3; j++)

if (u = matrix[i][]j]) return 3;
k=nrcnr [a] — nrcnr[a]%3 ;
l=nrcnr [b] — nrenr [b]%3 ;
i<k +3; i++)

for (1 =k ;
for (j =13 j<143; j++)

25

if (uw = xpnrcmatrix[i][j]) return 4;
return 0;

}

char checkpi () {
char i;

for (1 =1; 1 <=9; i++) pi[i] matrix [0][1—1];

/x we aim for pi[xptrans[i][j] 7 = matriz[i][j] */
for (i =0; i<=38; i++)

if ((s#ptransinv[0][i] != 0) && (=xptransinv [0][i] != pi[matrix[0][i]])) return 1;
for (i =1; i<=9; i+

if (pi[pi[pi[pi[i]]]] != 1) return 2;

for (1 =1; i <=19; i++) piinv[pi[i]]= 1 ;
return 0;

}
void init () {
char i,j,c;
for (j =0; j <=8 j++)
for (1 =0; i<=8; i+)
while ((c=getchar()) != EOF)

if (!isdigit(c)) continue;
else {
transrow [j][1] = ¢ — "1
break;

}
for ((j =0; j<=8; j++)
for (1 =20; 1 <= 8; i)
()) != EOF)
¢)) continue;

while ((c=getchar
if (lisdigit(

else {
transcol [j][i] = ¢ — "17;
break;
}
for (j = 0; j <=8 j++)
for (i =0; i <= 8; i++) {

pnrcmatrix [i][j]= &matrix [nrenr [i]][nrenr[j]];
ptrans[i][j]= &matrix[transrow [i][j]][transcol[i][]j]];
} ptransinv [transrow [i][j]][transcol[i][j]]= &matrix[i][]];
} for (j = 0; j <= 8; j++) *ptrans[0][j] = j+1;

/* init fills in the image of rl under g. Thus r1 will determine pi x/

void search2 (char k) {
char i;
while (k <= 80 && matrix [k /9][k%9]) k++;
if (k= 81) z++
else
for (1 =1; 1i<=9; i++) {

26

if (check(k/9,k%9,i) = 0) {
matrix [k /9] [k%9] = i; /x try this digit */

if (((+#ptransinv[k/9][k%9] != 0) && (piinv [*ptransinv [k/9][k%9]] !
((«ptrans[k/9][k%9] != 0) && (pi[*ptrans[k/9][k%9]] != i

matrix [k /9][k%9] = 0; continue;

}
if (sptrans[k/9][k%9] == 0) { /x try to fill this

if (check(transrow [k/9][k%9],transcol [k/9][k%9],piinv[i])
xptrans [k /9][k%9] = piinv[i]; /x try this digit */

search2 (k+1);
xptrans [k/9][k%9] = 0;

/+ the instance of search2 that tries a digit must clean it up

}
} else search2(k+1);

matrix [k /9] [k%9] = 0; /x clean up *x/

}
}

void searchl (char k) {
char i;
while (k <= 8 && matrix [k /9][k%9]) k++;
if ((k>=9) {
if (checkpi()==0) search2(9);
} else
for (1 =1; i <= 9; i++
if (check(k/9, k%9, i
matrix [k /9][k%9] = i;
searchl (k+1);
matrix [k /9] [k%9] = 0; /x clean up *x/

}
}
/* searchl fills rl arbitrarily but wvalidly;
this induces the relabelling pi: i |—"=> matriz [0][i—1] x/

int main() {

init ();

searchl (0);
printf (” Result: %d\n”, z);
return 0;

}

27

{

*

N

